
Real-Time Learning of Resolved Velocity Control
on a Mitsubishi PA-10

Jan Peters, Duy Nguyen-Tuong
Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen

Email: {jrpeters,duy}@tuebingen.mpg.de

Abstract— Learning inverse kinematics has long been fasci-
nating the robot learning community. While humans acquire
this transformation to complicated tool spaces with ease, it
is not a straightforward application for supervised learning
algorithms due to non-convex learning problem. However, the
key insight that the problem can be considered convex in small
local regions allows the application of locally linear learning
methods. Nevertheless, the local solution of the problem depends
on the data distribution which can result into inconsistent global
solutions with large model discontinuities. While this problem can
be treated in various ways in offline learning, it poses a serious
problem for online learning. Previous approaches to the real-time
learning of inverse kinematics avoid this problem using smart
data generation, such as the learner biasses its own solution.
Such biassed solutions can result into premature convergence,
and from the resulting solution it is often hard to understand
what has been learned in that local region.

This paper improves and solves this problem by presenting a
learning algorithm which can deal with this inconsistency through
re-weighting the data online. Furthermore, we show that our
algorithms work not only in simulation, but we present real-time
learning results on a physical Mitsubishi PA-10 robot arm.

I. INTRODUCTION

For most important control tasks, it is easier to specify
the task in the Cartesian coordinate systems of the task, e.g.,
the end-effectors position p ∈ Rm, than in the complicated
manifold of joint-space configuration q ∈ Rn. For this reason,
the transformation of task-space trajectories into joint space
trajectories, i.e., the inverse kinematics, is an essential step
for motor command generation [1], [2].

Learning inverse kinematics has a variety of interesting
properties in comparison to analytical approaches as it can
deal with camera calibration, sensor offsets and measurements
errors [3], [4]. Furthermore, as the kinematics of the robot are
implicitly represented by the measured data, singularities no
longer pose a difficult problem as the robot cannot steer to-
wards physically impossible configurations for learned models
[3], [4].

While various successful approaches exist to the offline
learning of inverse kinematics, see [5] for an extensive review,
only few methods exist which extend into the realms of real-
time learning. A pioneering approach in this direction was
presented in [3], where the authors considered fast online-
learning approaches using locally linear models to learn dif-
ferential inverse kinematics for a simulated humanoid robot.
However, while local solutions result into locally viable solu-
tions, the data distribution will determine the global solution

and consistency of the local models is no longer ensured.
In [3], the authors ensure consistency by biasing their data
generation such that the learning system would only be pre-
sented with a consistency-ensuring set of data. However, this
approach is problematic as the learner can get stuck in certain
configurations and the bias can largely determine the behavior
of the system [6]. Recently, [6], [7], suggested the idea that
a cost-related re-weighting can deal with the consistency of
models in the related problems such as Operational Space
Control. In this paper, we extend the idea of [6], [7] to the
problem of learning resolved velocity control [1]–[3]. For
doing so, we first reformulate resolved velocity control as an
optimization problem following the ideas presented in [8], [9]
and subsequently incorporate the resulting cost function into
the real-time learning control law. For extracting the regions
of localization where the kinematics are dominantly linear,
we make use of the multiple paired forward-inverse modeling
(MPFIM) approach [10], [11]: as prediction is a well-defined
problem for kinematics, we can determine the local region by
predicting the end-effector velocity1.This combined approach
results into a feasible learning framework which works on a
physical Mitsubishi PA-10 robot shown in Figure 1.

The main contributions of this paper are (i) the transfer
of the results in [6], [7] to Resolved Velocity Control, (ii)
the correction of misunderstandings in [3], [6] and (iii), to
our knowledge, this paper shows the first published results on
using the reward-weighting approach suggested in [6], [7] for
a real physical robot in real-time kinematics learning.

A. Notation and Review

The forward kinematics given by the transformation

p = fKinematics (q) (1)

is straightforward to compute and can be estimated using
stereo vision [1], [2]. However, the inverse of this function
f−1
Kinematics is not unique for redundant robots, i.e., robots with

excessive degrees of freedom such that n > m. Instead, a
multitude of solutions exists and computing inverse kinematics
requires that certain solutions are favored depending on their

1The idea of using coupled forward and inverse models in order to learn
uninvertable functions in [10], [11] can be seen as a local learning form of
the distal teacher approach [12]. However, while the distal teacher approach
ensures a consistent solution by minimizing global errors which is not the
case for local methods.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2872

Fig. 1. Mitsubishi PA-10 robot arm with seven degrees of freedom used in
the experiments in this paper.

proximity to the current joint configuration. For doing so, the
velocity of the end-effector in task space

ṗ = J (q) q̇ , (2)

is considered, where J (q) = dfKinematics (q) /dq denotes the
Jacobian. For this problem, we can generate local solutions
such as

q̇ = J (q)+ ṗ , (3)

in order to determine the joint-space trajectory for a given task-
space trajectory with J (q)+ as the pseudo-inverse of J (q). In
Section I-B, we will show how to derive this approach from
an optimization point of view.

B. Resolved Velocity Control as Optimization Problem

An important insight into redundant task-space control
problems (see [8], [9]) is that resolved motion control can be
derived as the solution of a constraint optimization problem
given by

min
q̇

C0 (q̇) = q̇T Nq̇ (4)

s.t. Jq̇ = ṗref,

where N denotes a positive definite metric weighting the
joint velocity distributing the movement onto the joints, and
ṗref = ṗd (t) + KR

p (pd (t) − p (t)) presents a reference
attractor in task space with gain matrix Kp and desired task-
space trajectory pd, ṗd. The resulting control laws or solution
of this optimization problem (4) obey the general form [8],
[9]

q̇ = N−1/2(JN−1/2)+ṗref ≡ J#
N ṗref, (5)

where the notation D+ defines the pseudo-inverse and D1/2

the matrix root of a given matrix D. According to Equation

(3), J#
N = N−1/2(JN−1/2)+ can be considered as the

weighted pseudo-inverse Jacobian.
However, while achieving the task perfectly, the joint-

space trajectories can result into unfavorable postures. For
handling such cases, additional regularization which do not
affect the tasks fulfillment but ensures a favorable joint-space
behavior needs to be included. From the point of view of the
optimization framework, we would select a nominal velocity
q̇0 (e.g., a velocity q̇0 = −KP (q−qrest) which pulls the robot
towards a rest posture qrest), and then solve the constrained
optimization problem

min
q̇

C1 (q̇) = (q̇ − q̇0)
T N (q̇ − q̇0) , (6)

s.t. Jq̇ = ṗref,

q̇0 = −KP (q − qrest).

Here, the nominal component q̇0 will be canceled out if
it conflicts with the task performance ṗref, but otherwise
will regularize the solution towards more favorable trajectory
generation. This formulation results into the general solution
given by

q̇ = N−1/2(JN−1/2)+ṗref (7)

+ N−1/2(I − (N−1/2J)(JN−1/2)+)N1/2q̇0,

= J#
N ṗref + (I − J#

NJ)q̇0 , (8)

where the first term results into task achievement while the
second term results into more favorable trajectories. When
having more than two tasks, these can be nested in a similar
fashion leading to a general framework of hierarchical task
control [8], [9].

II. LEARNING INVERSE KINEMATICS IN REAL-TIME

While the off-line learning of the inverse kinematics has
been long studied starting with the early literature in the late
1980s (see [4], [5], [13]–[15] for an overview), the same does
not hold true for online real-time learning. For this topic, few
approaches exist where [3] appears to be unique in the sense
that it can deal also with robots with a large number of degrees
of freedom. However, as outlined before, in this paper we
attempt to incorporate the strength of [3] in terms of the local
learning algorithms while avoiding the shortcomings, e.g.,
the over-biasing of the data generation and the problematic
localization. For doing so, we start by reviewing why the
problem is locally convex and show the corrected version
of the explanation provided in [3]. Subsequently, we show
how cost-related re-weighting can help us to ensure global
consistency among the models while avoiding the not real-
time capable global regression problem.

A. Local Models of Resolved Velocity Control

Learning resolved velocity control is equivalent to obtaining
a mapping (q, ṗref) → q̇ from sampled data using function
approximation. However, as the dimensionality of the task-
space reference trajectory ṗref is lower than the one of joint-
space velocity q̇, there are infinitely many solutions for q̇

2873

for most joint positions q. That means, the joint velocities
q̇ no longer forms a convex set and, thus, when learning
the inverse mapping (q, ṗref) → q̇, the learning algorithm
will average over unconnected sets of the solutions which can
result in invalid solutions to the learning problem. Therefore,
the learning problem is ill-conditioned such that directly
learning from samples with supervised learning techniques is
not suitable [3], [14].

Nevertheless, the convexity issues can be resolved by
employing a spatially localized supervised learning system,
which, in our case, needs to spatially localized based on joint
space position [3], [15]. The feasibility of this idea can be
demonstrated simply by averaging over the combination of
Equations (8) which yields that by averaging over the same
spatial position q we have

q̇ = 〈q̇〉 =
〈
J#

N ṗref + (I − J#
NJ)q̇0

〉
(9)

= J#
N 〈ṗref〉 + (I − J#

NJ)q̇0 ,

i.e., in the vicinity of the same q, a particular ṗ= 〈ṗref〉 will
always correspond to exactly one particular q̇. The uniqueness
only holds if q̇0 is just a function of q and qrest but not
q̇. However, while the metric would be set by the engineer
in an analytical approach, it will be the a result of the data
distribution in learned approaches unless further optimization
is employed as in Section II-B.

Therefore, locally linear controllers πi with parameters θi

defined by

q̇i = πi(q, ṗref) = θT
i [ṗT

ref,q, 1]T , (10)

can be used if they are only active in a region around q (note
that we added constant input in Equation (10) to account for
the intercept of a linear function). From a control engineering
point of view, this argument corresponds to the insight that
when we can linearize the plant in a certain region, we can find
a local control law in that region by treating the plant as linear,
and, in general, linear system do not have the problem of
non-convexity of the solution space when learning an inverse
function.

Next we need to address how to find an appropriate piece-
wise linearization for the locally linear controllers. For this
purpose, we learn a locally linear forward or predictor model
ρi with parameters ψi defined by

ṗi = ρi(q, q̇) = ψT
i [q̇T ,qT , 1]T . (11)

Learning this forward model is a standard supervised learning
problem, as the mapping is guaranteed to be a proper function.
A method of learning such a forward model that automatically
also learns a local linearization is Locally Weighted Projec-
tion Regression (LWPR) [16], a fast online learning method
which scales into high-dimensions, has been used for inverse
dynamics control of humanoid robots, and can automatically
determine the number of local models that are needed to
represent the function. The membership to a local model is
determined by a weight generated from a Gaussian kernel

wi(q) =e−
1
2 (q−ci)

T Di(q−ci) , (12)

centered at ci in joint-space, and shaped by a distance metric
Di. For a closer description of this statistical learning algo-
rithm see [16].

For each local forward model created by LWPR, we auto-
matically create a local controller. This approach of pair-wise
combining predictors and controllers is related by the MPFIM
or MOSAIC architecture [11] where the quality of predicting
a task is used for selecting which local controller should be
used for the task.

B. Globally Consistent Resolution of Redundancy

In order to control a robot with these local control laws,
they need to be combined into a consistent global control law
q̇ which is given by a weighted average [16]:

q̇ = π(q, ṗref) =
1

WΣ

n∑

i=1

wi (q)πi(q, ṗref), (13)

with WΣ =
∑n

i=1 wi (q) as normalization constant. Each local
control law πi(q, ṗref) given in (13) is just valid in its local
region computed by wi (q).

However, while the mappings (q, ṗref) → q̇ can properly
be learned locally in the neighborhood of some q, due to
the redundancy in the robotic system, there is no guarantee
that across the local mappings the same type of solution is
acquired. This problem is due to the dependence of the inverse
solution on the training data distribution in each local model –
i.e., different distributions will pick different solutions for the
inverse mapping from the infinity of possible inverses. While
this problem is not devastating for a prismatic robot, it results
in severe problems for any nonlinear robot with rotary joints
as these require multiple, consistent linear models.

There are two different approaches tackling such problems:
(1) by biasing the system towards using a pre-processed data
set such that it can only produce one particular inverse solution
[3], and (2) by incorporating a cost/reward function in order
to favor a certain kind of solution. The first approach lacks
generality and can bias the learning system such that the task
is not properly accomplished anymore. The major shortcoming
of the second approach is that the choice of the cost/reward
function is in general non-trivial and determines the learning
algorithm as well as the learned solution.

The crucial component to find a principled approach to this
inconsistency problem is based on the discussion in Section
I-B. Resolved velocity control can be seen as a constrained
optimization problem with a cost function given in Equation
(4). Thus, the cost function based approach for the creation
of a consistent set of local controllers for operational space
control can be based on this insight. The cost function can be
turned into a cost-related weight % (q̇) by running the cost
C1 (q̇) through an exponential function:

% (q̇) = e−σ−2(q̇−q̇0)T N(q̇−q̇0),

where σ is a scaling factor. The scaling factor σ does not
affect the optimality of a solution q̇ as it acts as a monotonic
transformation in this cost function. However, it can increase

2874

Algorithm 1 Reward-Weighted Regression for Application in
Real-Time Learning of Resolved Velocity Control.

• query point (qt, ṗt
ref)

• last realized movement (qt−1, ṗt−1, q̇t−1)

Online Learning: Incorporate last realized movement
1. Predict using the current models

ṗt−1 =
∑n

i=1 wi

(
qt−1

)
ρi(qt−1, q̇t−1)

∑n
i=1 wi (qt−1)

.

2. Update predictors and weighting kernels using LWPR. If
necessary, generate new models.
3. Determine the null-space behavior

q̇t−1
0 = −KP (qt−1 − qrest).

4. Compute the reward-weight

% (q̇) = e−σ−2(q̇−q̇0)
T N(q̇−q̇0).

5. Model Update:
for each model i do

add data point to reward-weighted regression

Φk = [(ṗk
ref)

T , (qk)T , 1],
ΛT

k = q̇k,

Wi = diag
(
%

(
q̇k

)
wi(qk)

)
.

perform policy update:

θi =
(
ΦTWiΦ

)−1
ΦTWiΛ.

end for

Recall: Generate q̇ for current query point
1. Compute policy output

π(qt, q̇t) =
∑n

i=1 wi (qt)πi(qt, q̇t)∑n
i=1 wi (qt)

.

2. Determine exploration ε ∼ N
(
0, σ2I

)
.

3. Returned command q̇ = π(qt, q̇t) + ε.

the efficiency of the learning algorithm significantly when
only sparse data is available for learning (i.e., as for most
interesting robots as the high-dimensional action spaces of
complex robots will hardly ever be filled densely with data).
This re-weighting factor enforces that we will always use the
same metric throughout all models and the same velocity in
the null-space which pulls us towards the rest posture.

We are now in the position to formulate a supervised
learning algorithm for the local operational space controllers.
The task constraint in Equation (4) as well as the physics of
the robot are automatically fulfilled by all data sampled from
the real robot similar to a self-supervised learning problem.
Therefore, for learning the local operational space controllers,
we have obtained a local linear regression problem where we

0.5 0.55 0.6 0.65 0.7 0.75
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
Task-Space Performance x vs y

Cartesian Position x

C
ar

te
si

an
 P

os
iti

on
 y

Desired
Learned
Analytical

0.38 0.4 0.42

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
y vs z

Cartesian Position z

C
ar

te
si

an
 P

os
iti

on
 y

Fig. 2. This figure illustrates the task performance of both the analytical and
the learned resolved velocity control laws. Here, the green dotted line shows
the desired trajectory which the robot should follow, the red dashed line is
the performance of the real-time learning control law while the blue solid line
shows the performance of the resolved velocity control law. Note, that while
the online learning solution is as good as the analytical solution, it still yields
comparable performance without any pre-training of the local control laws
before the online learning (Nevertheless, the predictors were pre-trained).

attempt to learn primarily from the observed motor commands
uk which also have a high reward w(q̇k) within each active
local model πi(qk, ṗk

ref). An intuitive solution is to use reward-
weighted regression, i.e., find the solution which minimizes the
localized error

Ei =
N∑

k=1

ω
(
q̇k

)
wi

(
qk

) (
q̇k − πi(qk, ṗk

ref)
)2

, (14)

for each controller i. The solution to this problem is the well-
known weighted regression formula:

θi =
(
ΦTWiΦ

)−1
ΦTWiΛ, (15)

with rows in the matrices Φ, Wi and Λ defined by

Φk = [(ṗk
ref)

T , (qk)T , 1], (16)

ΛT
k = q̇k, (17)

Wi = diag
(
%

(
q̇k

)
wi(qk)

)
. (18)

When employing this reward-weighted regression solution, we
will converge to a globally consistent solution across all local
controllers. The learning algorithm is shown in Algorithm 1.
Note that this step was only possible due to the essential cost
function in Equation (6).

III. EXPERIMENTS & EVALUATIONS

In order to demonstrate the feasibility of our learning
approach, we evaluated our learning approach to resolved
velocity control on a physical Mitsubishi PA-10 arm shown
in Figure 1. We compare it to the analytical solution found in
the robotics literature [1], [2].

2875

A. Experimental Setup

The Mitsubishi PA-10 (Figure 1) is general purpose robot
arm for low-velocity applications such as surgical tool place-
ment or teleoperated soft-tissue manipulation [17]. This robot
has seven degrees of freedom (DoF) and, thus, has four degrees
of freedom too much for following a desired trajectory in
cartesian space. Note that we do not track orientation as
otherwise we could not experimentally show that we can
cope with a large number of redundant degrees of freedom.
We use the Mitsubishi supplied software to access the robot
and command it in an asynchronous mode. This allows us
to command joint velocities by giving desired velocities at a
200Hz sampling frequency. These desired increments are then
controlled using the internal, joint-level high gain control loop
of the Mitsubishi PA-10 control station.

The goal of the experiment is to show that we can learn
consistent resolved velocity control laws without observing
the task beforehand. For doing so, we choose the standard
task of a figure-8 in task space [18], [19] with

px = p0
x + lx sin (ωt) , (19)

py = p0
y + ly sin (ωt) cos (ωt) , (20)

pz = p0
z, (21)

where ω = 6π/50s−1 and

p0 = [p0
x, p0

y, p
0
z] = fKinematics(qrest) (22)

is determined by the rest posture qrest. The rest posture is given
by

qrest = [0.1627, 0.6076, 0.2127, . . .

1.4407, 0.2626, 1.6965,−0.0138]T,

and was selected such that it lies in the middle of the visual
field of the stereo camera pan-tilt unit. For the joint-space pull
towards the rest posture

q̇0 = −KP (q − qrest) (23)

with KP = 0.1I. The gain KR
p of the reference attractor is

set to KR
p = 10I. We assume an identity metric N = I for

both the analytical control law which serves as the benchmark
control law as well as for the cost function of the reward-
weighted regression.

B. Results

The experiment consists out of two phases. In the first phase,
we pre-train the predictor models by moving in a small region
in joint-space around the rest posture. This initialization allows
us to generate some initial predictor models; however, the
controller models are not learned in this first part. In the second
phase, we start the resolved velocity control law on the desired
trajectory and perturb its out put with a very small amount of
exploration ε ∼ N

(
0, σ2I

)
with σ = 0.001, i.e.,

q̇ = π(q, ṗref) + ε. (24)

Such exploration is known under the name motor babbling in
the behavioral literature and helps humans learn motor tasks

in a similar manner [5]. It is absolutely necessary for fast
learning of the resolved velocity control law as the robot would
otherwise never have a sufficiently rich set of observations.
While this motor babbling is so small in magnitude that it
cannot be observed in Figures 2-4, it nevertheless has an
impact as it causes the robot to slightly drift in the null-space
of the task during execution, as can be observed in Figures
3,4.

The resulting online-learning is achieved sufficiently fast
the robot is capable to learn tracking on the same trajectory
which it is executing. Due to the prediction accuracy, the
learning system has already determine 7 different local regions
and will only learn 5 additional different regions during the
execution of the trajectory. Altogether this trajectory requires
12 locally linear regions for accurate tracking. All these
models determine the activity of the locally linear control laws
which are learned online during the execution of the trajectory.
The high gain of the reference attractor compensates for initial
model errors and could be reduced once the control law has
been achieved a high level of accuracy.

In Figure 2, the resulting task-space performance can be
observed. We can see that the resulting task space tracking
performance is quite close to the one of the analytical resolved
velocity control law. In Figures 3,4, we can see a comparison
of the joint-space trajectories of both the analytical resolved
velocity control law and the observed one. While both are
similar throughout the trajectory, they differ due to the explo-
ration which causes a drift in null-space, the online, real-time
learning and model errors.

IV. CONCLUSION

In this paper, we have shown the first real robot results of the
application of the reward-weighted regression framework for
online, real-time, learning of resolved velocity control. The
robot experiments were conducted on a physical Mitsubishi
PA-10 in our lab. For doing so, we had to overcome the
difficulties of having a non-convex data distribution by only
learning in the vicinity of a local model anchored both in joint
position. The local regions are obtained by learning forward
models, which predict the movement of the end-effector. The
global consistency of the redundancy resolution of the local
model controllers is ensured through minimizing the cost
function behind resolved velocity control. The combination
of these components has resulted into a proper learning setup
for resolved velocity control.

The main contributions of this paper are (i) the transfer
of the results in [6], [7] to Resolved Velocity Control, (ii)
the correction of misunderstandings in [3], [6] and (iii), to
our knowledge, this paper shows the first published results on
using the reward-weighting approach suggested in [6], [7] for
a real physical robot in real-time learning of resolved velocity
control.

While we only track the position in this paper in order to
show that we can learn with a large number of redundant
degrees of freedom, future work will include tracking the
orientation as well. However, this work will be executed on

2876

systems with a larger number of degrees of freedom in order
to remain challenging.

As robotics increasingly moves away from the structured
domains of industrial robotics towards complex robotic sys-
tems, which both are increasingly high-dimensional and in-
creasingly hard to model, such as humanoid robots, the tech-
niques developed in this paper will be beneficial in developing
truly autonomous and self-tuning robotic systems.

REFERENCES

[1] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. Wiley, 2006.

[2] L. Sciavicco and B. Siciliano, Modeling and control of robot manipu-
lators. Heidelberg, Germany: MacGraw-Hill, 2007.

[3] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Hawaii, USA, 2001.

[4] D. DeMers and K. Kreutz-Delgado, “Canonical parameterization of
excess motor degrees of freedom with self organizing maps,” IEEE
Transactions on Neural Networks, vol. 7, pp. 43–55, 1996.

[5] ——, Neural Systems for Robotics. San Diego: Academic Press, 1997,
ch. Inverse kinematics of dextrous manipulators, pp. 75–116.

[6] J. Peters and S. Schaal, “Reinforcement learning for operational space,”
in Proceedings of the International Conference on Robotics and Au-
tomation (ICRA), Rome, Italy, 2007.

[7] ——, “Reinforcement learning by reward-weighted regression for oper-
ational space control,” in Proceedings of the International Conference
on Machine Learning (ICML), 2007.

[8] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Boston, MA: Addison-Wesley, 1991.

[9] J. Peters, M. Mistry, F. Udwadia, R.Cory, J. Nakanishi, and S. Schaal, “A
unifying methodology for the control of robotic systems,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Edmonton, Canada, 2005.

[10] M. Haruno, D. M. Wolpert, and M. Kawato, “Mosaic model for
sensorimotor learning and control,” Neural Comput, vol. 13, no. 10,
pp. 2201–20, 2001.

[11] ——, “Multiple paired forward-inverse models for human motor learn-
ing and control,” in Advances in Neural Information Processing Systems.
Cambridge, MA: MIT Press, 1999.

[12] M. I. Jordan, “Computational aspects of motor control and motor
learning,” in Handbook of perception and action, H. Heuer and S. W.
Keele, Eds. New York: Academic Press, 1996.

[13] A. Guez and Z. Ahmad, “Solution to the inverse kinematics problem
in robotics by neural networks,” in Proceedings of IEEE International
Conference on Neural Networks, San Diego, CA, 1988, pp. 102–108.

[14] I. M. Jordan and Rumelhart, “Supervised learning with a distal teacher,”
Cognitive Science, vol. 16, pp. 307–354, 1992.

[15] D. Bullock, S. Grossberg, and F. H. Guenther, “A self-organizing neural
model of motor equivalent reaching and tool use by a multijoint arm,”
Journal of Cognitive Neuroscience, vol. 5, no. 4, pp. 408–435, 1993.

[16] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparameteric statistics for real-time robot learning,” Applied
Intelligence, vol. 17, no. 1, pp. 49–60, 2002.

[17] C. W. Kennedy and J. P. Desai, “Modeling and control of the mitsubishi
pa-10 robot arm harmonic drive system,” IEEE/ASME Transations on
Mechatronics, vol. 10, no. 3, p. 263, JUNE 2005.

[18] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Comparative
experiments on task space control with redundancy resolution,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Edmonton, Canada, 2005.

[19] J. Nakanishi, M. Mistry, J. Peters, and S. Schaal, “Experimental evalua-
tion of task space position/orientation control towards compliant control
for humanoid robots,” in IEEE International Conference on Intelligent
Robotics Systems (IROS 2007), 2007.

0 2 4 6 8 10 12 14 16

0.05

0.1

0.15

0.2

Time t [s]

A
ng

le
q 1

[ra
d]

Learned
Analytical

(a) Position of Joint 1

0 2 4 6 8 10 12 14 16

0.5

0.6

0.7

Time t [s]
A

ng
le

q 2
[ra

d]

Learned
Analytical

(b) Position of Joint 2

0 2 4 6 8 10 12 14 16

0.15

0.2

0.25

0.3

Time t [s]

A
ng

le
q 3

[ra
d]

Learned
Analytical

(c) Position of Joint 3

0 2 4 6 8 10 12 14 16

1.2

1.4

1.6

Time t [s]

A
ng

le
q 4

[ra
d]

Learned
Analytical

(d) Position of Joint 4

Fig. 3. This figure illustrates the resulting joint-space trajectories for joints
1 to 4 of both the analytical and the learned solution of the resolved velocity
control law executed on our physical Mitsubishi PA-10 shown in Figure 1.
The remaining joints look analogously. Please note that these differ slightly
as the learning solution cannot oversample the state-space and, thus, it does
not converge to the optimal solution that fast. Additionally, the model error
accumulates along the trajectory and the task-space control law needs to
compensate for it. Note that the task space trajectory is performance of the
learned approach is comparable to the analytical approach as presented in
Figure 2. The blue solid line shows the joint-space trajectory of the analytical
approach while the red dashed line shows the real-time learning solution.

2877

